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1. SUMMARY 

Temperature data acquired from turbine stator transient flow tests performed in the 
Turbine Research Facility, operated by the Propulsion Directorate of the Air Force Research 
Laboratory, show a large initial thermal impulse appearing in each test. This impulse is 
clearly not related to the performance characteristics of a particular test article, and it raises a 
question concerning its interpretation with regard to the test data in which it is imbedded. 

The flow physics producing the thermal impulse is assumed to be associated with the 
sudden expansion of the working fluid from a large reservoir into the domain of the test 
article, which is initially in vacuo. In August of 1997, a one-dimensional mathematical 
analysis of the wave phenomena associated with the expansion of a perfect gas from an 
infinite reservoir into a void main was undertaken in order to understand the origin of this 
impulse, or spike; and to understand the variables upon which it depends. It was understood 
at the outset that this model would apply only to the very early development of the flow in 
the actual main supplying the test article with air from the facility's reservoir. 

The gas flow from the infinite reservoir into the main was found to be embodied by a 
simple, centered, backward-facing expansion wave. The limit of characteristics bounding the 
wave at its tail was found to be a shock, since the Rankine-Hugoniot Relations are satisfied in 
a non-trivial way across that bound. The lead characteristic of the expansion wave was found 
to be permanently located at the exit plane of the reservoir following initiation of the flow 
process. In the one-dimensional flow model, it is kept in place by an isentropic expansion 
shock which, in the case of an infinite reservoir, does not contradict the Second Law of 
Thermodynamics, and thus is physically permissible. This assertion is demonstrated in the 
appendix of this report. The stationary position of the lead characteristic of the backward- 
facing expansion wave implies that flow velocity is precisely critical at initial time, and for 
any time interval following initial time, since the main is infinite in the mathematical model. 

The stagnation temperature was found to be a strict function of sound speed 
throughout the domain of the wave, and was found to increase monotonically from a 
minimum at the critical point, at the head of the wave, to a maximum at the tail of the wave. 
The ratio of the maximum to the minimum value was found to be fixed, and to have a value 
of six for standard air. The strict dependence of stagnation temperature upon sound speed was 
found to be due to the fact that the Riemann Invariant on each spanning characteristic of the 
simple wave has precisely the same value. The stagnation temperature is fixed, but has a 
distinct value on each straight characteristic of the simple wave. 

It is concluded, based on the findings of this analysis, that the observed thermal spike 
occurring in the blow-down process is the result of the heat of the compression to form the 
shock proceeding into the main when the flow is initiated. The calculated stagnation 
temperature distribution in the rarefaction wave is the artifact of that process. The theory of 
characteristics does not yield any information on the flow physics associated with the shock, 
itself, but it accurately portrays the compression process everywhere in the domain of the 
flow following the shock. 



2. INTRODUCTION 

The Turbine Research Facility, operated by the Propulsion Directorate of the Air Force 
Research Laboratory, is a transient blow-down facility which has the purpose of obtaining 
accurate aerodynamic, thermodynamic, and thermal performance data from large turbine 
stages without the expenditure of impractical amounts of power. This objective is clearly met 
by this facility, and it is not the intention of this report to discuss its configuration or 
operation. This is well documented in open literature. However, an interesting thermodynamic 
phenomenon, sometimes called the  "thermal spike", appears at the initiation of the blow- 
down process. The purpose of this report is to discuss the mathematical physics of the 
thermal spike in order to better understand its origin. 

The general hypothesis presented in this report is that the thermal spike is produced by 
a backward-facing rarefaction wave which has, at its tail, the initial shock proceeding into the 
domain of the test article when the blow-down process is initiated. The mathematical model 
presented here is that of a one dimensional, centered, backward-facing rarefaction wave 
created by the expansion of a calorically perfect gas from a reservoir of infinite extent into a 
void main. The gas flow is assumed to be inviscid. 

3.       THE FIRST AND SECOND LAWS OF THERMODYNAMICS AND THE 
DERIVATION OF THE  EQUATIONS OF FLUID MOTION 

Consider Figure 1. 
Here is shown an infinite 
reservoir from which a shock, 
followed by a rarefaction, 
issues into a main in vacuo at 
time 0. The flow is assumed 
to be one-dimensional, and 
perpetually choked at the 
indicated plane 0-0 in Figure 
1 after time 0.  Since the 
flow is one-dimensional, 
there can be no convergence 
of the streamlines as the flow 
enters the rarefaction; so the 
flow cannot accelerate on a 
gradient as it approaches the 
plane of choked flow.  It is 
therefore quiescent to the left 
of plane 0-0, maintaining a 
time-steady stagnation 

Infinite Reservoir 
Quiescent State 

Plane of Choked Flow 
Shock 
Front 

U 

^w\w^w^w\^^^^^^ 

• Vacuum 

Gas Expansion Into Vacuous Main 
Figure 1 



theraiodynamic state, defined by fixed stagnation temperature and pressure. It turns out that 
essentially no inconsistency1 is produced by assuming an abrupt acceleration to critical flow 
at plane 0-0 in Figure 1, followed by supersonic flow throughout the rarefaction. The thermal 
spike is evidently produced by the flow work done on the various elements of the expansion 
wave, also called a rarefaction wave, which propagate at different speeds in the rarefied 
region. 

The analysis of the wave propagation problem requires that we examine the First Law 
of Thermodynamics in its convective form. We begin by considering control volume V shown 

in Figure 2. Over any given time interval, bt = tz - tx , beginning at state 1 and ending at 

state 2, the First Law of Thermodynamics may be stated according to: 

E   + Q    =W   + (E- E.)    + E 
in rv cv » 1   tv I CV CV CV out (1) 

where   W     represents the 
CV r 

work in all forms done by the 
system upon its environment. 
We may assume that our system 

is adiabatic, and that   W     is 
CV 

strictly flow work. Let 

6m   = (m, - m.)  , and 
in 2 1  in 

bm     = (m„ - m.)   . Clearly, 
out 2 I'out 

m in 

n 
A 

Ein E out 

 > E -    „Q m cv - 
u 

\ ' 

A 

w Q CV 

out (m )„ - (m )   = 5m.   -   bm v   cv'2        v   cv'l m i 

In this case, over time interval   of , it may be written that 

Control Volume V 
Figure 2 

W   = - p 'V 'bm    + p   -v   'bm 
cv in   in        in out   out out (2) 

Note that the specific total energy is defined as: 

(V'V) 
e = u + (3) 

1 Refer to Appendix. 



Keeping Equation (3) in mind, we should write: 

(E2-Ex)    =b(m-ecv) 
£             1   CV                     cv     cv 

(4) 

where   m     and   e     are the mean values in control volume V. 
cv                   cv 

Also: 

E   = bm. • e 
in               ln    in 

(5.0 

E    = 5m ;e , 
out              out    out (5.Ü) 

In view of the adiabatic hypothesis, Equation (1) implies that the following rate equation 
exists: 

6min                                        W*CT         
bmout   f 

• (e    + D 'V 1 _            +            * (e     + p   "V   ) §j      *-in        rmin>           gf                  gf       V out       *out   out' 

Each of the rates in the above equation has a limit as   8f becomes infinitesimal, resulting in 

the expression written next: 

dE        dm ,                                dm 
rv                  out                                                            tn 

+          • (e     + p   -v   ) -  • (e.   + p. -v. ) = 0 gt                Qf      v  out       rout   out'           Qf     y m       rm   m' 

(6) 

But if a   is the surface area of control volume V, it must be that: 

dm ,                                dm out                                                     m 
•(e     + p   -v   ) -  • (e.   + p. 'V. ) = 

Of         V   OUt          *OUt     OUt'                 Qf        V   M          rBI     «' 

(7) 

IJUV'AHe^ pv)do 

4 



The role of the flow work upon the rate of change of total energy within V is made apparent 
by Equation (7). 

Consider point  z   in control volume V of Figure 2. Let us suppose that every 

neighborhood a of z , including control volume V, is a regular, simply-connected domain 

upon which V is continuously differentiate, and upon which1 e , p , and p are of 

class C1. Let us further assume that z is in an Eulerian reference frame, with the fluid 

elements flowing past at velocity V . Let de be an infinitesimal element of a, and pick 

control volume V itself as an example. Then Gauss' Divergence Theorem implies that for V: 

//a
(pf '^surface* P^d°   = /]>?•"W°   + /]><?•*)*>   = 

(8) 
|||[V-(p V)-e + (p V)-Ve]dt + ffflV'VP + W'?)mP\dB 

Equation (8) applies to any neighborhood a of z . 

It is apparent that if one picks another point in V, such as z , then every 

neighborhood a' of z   is also a regular, simply-connected domain upon which   V  is 

continuously differentiable, and upon which e , p, and p are of class C1. Again, we may 
select control volume V as the example, and let us divide it into a set P of contiguous, non- 
intersecting sub-volumes   8., called a partition, such that each contains a point in V in its 

interior. It is clear from the properties assigned to V that for a real number   e > 0 , partition 
P may be constructed such that the sum shown in Relation (9), taken over a refinement of P, 
satisfies the indicated condition: 

^i i=l,a 

8(pe) dEcv 
 *E    -    

dt        '       dt 
< € (9) 

where  a is the number of sub-volumes in the refinement. It follows that: 

1A function on a domain S> in Rp is of class C if all of its partial derivatives exist and are continuous on &. 
5 



— 
d(pe) 

dt 
de (10) 

Introducing the substantial derivative, Equation (10) becomes: 

dEr 

\\\^t
d*-lll?'«e9)d> (11) 

But we find that Equation (8) may also be written in the form: 

ff (PV-nyedo + ffpiV'n)da = 

(ffV'(peV)dt + ffJV-(pV)de (12) 

Hence, Equation (6) requires that: 

/>        r 

p.^   + V(pV) 
Dt 

de = 0 (13) 

Equation (13) guarantees that at any point z   chosen in V, the following convective1 

form of the energy equation holds: 

De 
p.—   + V'{pV) = 0 

Dt 
(14) 

For suppose, at some point z   in control volume V, there exists some number K such that 

|K| > 0, and such that: 

1 Convective forms are those containing the substantial derivative. 
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De 
p-—   + V(pK) = K 

Dt 

Then there is a sub-volume,    e. c p , and a neighborhood of type a', such that  e. c  «'; 

and which has the property that, for some | ft | > 0: 

De 
p.        +V(pV) 

Dt 
de = 

Note that under the hypotheses used to formulate Equation (13), control volume V was picked 
without loss of generality, i.e., it was not assigned any special properties. It follows that, for 
sub-volume e.   : 

De 
p. +V'(PV) 

Dt 
de = 0 

Hence, our supposition leads to a contradiction. Equation (14) characterizes the relationship 
between local flow work done and specific total energy at a point in a flow field for an 
adiabatic flow process; which is the reason for its derivation in this report. 

We reiterate that by convective form of an equation, we mean that it is written in 
terms of its substantial derivatives. There are four convective equations which apply from the 
physics principles governing the flow field being considered here. They are listed next. 

First Law of Thermodynamics 

^! + J-V-0>K) =o 
Dt        p 

DV       !„       A      n + —Vp +A = 0 

(15.0 

Dt       p 

Momentum Equations 

A * 0 (1510 



Mass Flow Continuity 

Dp 

Dt 
+ pV-K = 0 (15.iii) 

Second Law of Thermodynamics 

Ds      Du Dv 
T-— = — + P-— 

Dt       Dt Dt 
(15.iiii) 

Continuing, we note that the above system of equations can be reduced. Note that 
Equation (15.iiii) can be rewritten in the form: 

Ds 

~Dt 

Du 

~Dt 
P_.Dp 
o2    Dt 

(16) 

Making use of the mass flow continuity equation, this equation becomes: 

£s      Du      P^.r, T- — = -— + — V * V 
Dt       Dt       p 

(17) 

In view of Equation (3) the substantial derivative of the internal energy may be written as: 

/ -A — f l ix 

(18) Du      De 

~Dt       Dt v2, 

DV 

Dt 

Taking account of Equation (15.ii), the substantial derivative of the internal energy can be 
written in terms of the momentum constraint: 

Du      De      -> 

^Dt      ~Dt 
—IP 
P 

+ V'A (19) 

The result of these operations is that Equation (15.iiii) becomes: 



T- — = El  + -V'(pV) + V'A = V'A 
Dt       Dt       p 

(20) 

Making use of Gauss' Divergence Theorem, Equation (20) implies that for sub-volume, 

E. c y , the entropy efflux meets the condition that: 

d(ps)       P^'A 

dt 
de + ff s(pV)-ndo = 0 (21) 

It is immediately apparent from the form of Equation (21) that the only lost work is due to 

the dissipation force per unit volume,  A . It follows that in case A = 0 , i.e., the Euler 
Equations hold, the lost work function must vanish, and the thermodynamic process must be 
reversible. If we suppose that this is the case, then our hypothesis that the system is adiabatic 
implies that: 

dQE 

dt 

' ds 
pT— K   dt 

de = 0 (22) 

Hence, if the Euler Equations hold throughout control volume V, and the adiabatic 

assumption holds1, then, at every point, p , in V: 

dt 

In addition, Equation (20)J is reduced to: 

Dt 

1 These relations apply in a domain where pT>0. 



at every point in V. Now recall that: 

Ds      ds      .. „ 
— = — + Ws 
Dt      dt 

Hence, we must conclude that the following equation holds at every point in V: 

V-Ws = 0 (23) 

Let us add the hypothesis that the Euler Equations of Motion hold for our description 
of the rarefaction shown in Figure 1. It is now clear that the convective relations which apply 
from the physics principles governing the flow field are three in number. These governing 
equations1 are: 

Momentum (Euler Equations) 

— + -Vp = 0 (24.i) 
Dt        p 

Mass Flow Continuity 

— + pV-f = 0 (24.ii) 
Dt 

Entropy Convection 

Ds 

ds (24-iü> 
— = 0 
dt 

Finally, we note that for a compressible medium in which pressure is strictly 
dependent upon density, sound speed is expressible as: 

C = * (25) 
\dp 

' These relations apply in a domain where pT>0. 10 



4. CHARACTERISTIC THEORY APPLIED TO THE ONE-DIMENSIONAL WAVE 

Letting the subscripted variable represent partial differentiation, the inviscid equations 
of fluid motion described in Section 3, when reduced to one space dimension, appear as 
follows: 

p   + U-p   + p-U   = 0 
rt r X X 

u + U-U  + —p   = 0 
t x p  rx 

5=0 
t 

Us   = 0 
X 

(26.i) 

(26.Ü) 

(26.iii) 

(26.iiii) 

Clearly, Equations (26.iii) and (26.iiii) imply that the one-dimensional expansion wave 

described here is isentropic, since U > 0   everywhere. When Equation (25) is introduced, 

the above system reduces to two equations in the following form: 

(27.0 p   + U-p   + p-U  = 0 rt XX 

p-U + p-U-U  + C2-p   = o 
r      t        r X x 

(27.il) 

We suppose that the 
partial derivatives, p , 
p , U , and U all exist, 

t        x t 

and are continuous 
throughout domain, &, 
shown in Figure 3. Then 
function, / , solving the 
above equations, is a 
mapping from domain, 
@, in the (x, t) plane to 
range, R, in the ( p ,U) 
plane which belongs to 
class C1 everywhere on 
31. It is clear that / is 
differentiable at every 
point, such as c, in 
domain, @. We note that 

U 

-*-x 

Figure 3 

li 



3) and R are each in an R2 space. 
Consider the trajectory passing through point, c, and another point, u, in 2>, and let m 

be the distance from c to any point, x, on the straight line connecting c and u. Now, let e be 
the ordered pair of numbers, (v , v ), such that m-e = (m-v , m-v) , and x = c+m-e . 
Continuing, let D/(c) symbolize the derivative of / at c, and note that D/(c) is a linear 
function at point c in &. Let us define the product, D/(c)-(m-e), as: 

Df(c)-(m-e) =m • 
P (c)   P,(<0 

U{c)   17(c) 

Vj(c) 

v(c) 
(28) 

We note that existence of D/(c) implies that the following inequality must hold: 

V €>0, 36(e)>0, |m-e|<5(e) ■=» \f(c+m-e) - fip) - Df{c)-(m-e)\ <L e\m-e\ (29) 

It follows immediately that: 

V €>0, 3ö(e)>0, |/n-e|<ö(e) 
m 

•{/(c+m-e) -fie)) -Wc>(e) z e\e\ (30) 

Inequality (30) proves that D/(c)-(e) is the directional derivative of / at c in the 
direction of u. It is not generally the case that the directional derivative of / in the direction 
of u is tangent to the trajectory at c in @, but as u approaches c on this trajectory, it becomes 
so.  Letting h be the ordered pair of numbers, (w , w ), comprising the components of 

D/(c)-(e), we may write: 

DM'ie) - 
w(c) Px(c)   p/c) v(c) 

w (c) 
2V ' 

U(c)   Ut{c) v2(c) 
(3D 

The Jacobian Determinant for the above transformation should be written as seen next. 

12 



J = 
P (c)   P.(c) 

U(c)   U(c) 
(32) 

Let us suppose that J * 0 . In this case, the following equations may be written: 

v(c) 

v(c) 
2V ' 

1 

J 

Utic)   -p/c) 

-£/(c)   p(c) 

Wj(c) 

w2(c) 
(33) 

It is clear that if, and only if,   J * 0 , Equations (31) and (33)  require that the linear 
function, D/(c), be a one-one correspondence mapping the Cartesian space, R2, containing 3), 
onto the Cartesian space, K2, containing R. 

Let us introduce that the following theorem: 

Inversion Theorem. Suppose function, / is in class C1 on a neighborhood of c el7 

mapping Kp to Rp. Let us further suppose that D/(c) is a one-one map of W onto Kp. Then 
there exists V(U) such that U is a neighborhood of c, and V is a neighborhood of /(c), and 
/ is a one-one mapping of U onto V, and f has a continuous inverse function, g, defined on 
set V to set U. Moreover, g is in class C1 on V, and if y e V and x = g(y) e U, then the 
linear function, Dg(y), is the inverse of linear function, D/(x). 

Note that the hypothesis that D/(c) is a one-one map of W onto W is satisfied for 
p = 2 in our system. The Inversion Theorem guarantees the existence of a function g 

mapping domain R to domain @ such that g is continuous on R, and such that g = f    on R. 
We conclude, in addition, that if d E R, and c = g(d) 6 D, then Dg(d), is the inverse of 
D/(c). Consider d e R, and let the trajectory in R, portrayed in Figure 3, pass through 
points d and z in R, where  d = f(c)  and  z = flu) . By the Inversion Theorem, we are 

assured that c = g(d) and u = g(z) ■ Let h be a particular ordered pair, (w^c), w2(C)), and 
note that for point y on the straight line connecting points d and z in R, we may select a 

positive, real number, q, such that q'h = (q-w^c), #*w2(C)) , and y = d+q-h . It is thus 
apparent that q is the distance from d to y, and that h(gd)) = h(c) . Using a construction 
similar to that applied to D/(c) in domain @, the directional derivative of g at d in the 
direction of z in R may be shown to exist, and be written as: 

Dg(d)ih) = 
v(g(4» v(c) 

1 
U(g(d))   -pji(g(d)) ^((gid)) 

yjgm v(c) 
2V ' 

~   J -Uji(g(d))   px((g(d)) ™2Md)) 
(34) 

13 



As was the case for D/(c)-(e), Dg(d)-(h) becomes tangent to the trajectory shown in R as 
point z approaches point d on that trajectory. 

One may deduce from Figure 3 and Equation (34) that when z is located such that the 
line connecting d and z is parallel to the axis of abscissas, then w   = 0 , and when the line 

connecting d and z is parallel to the axis of ordinäres, w   = 0 . In case w   = 0 , Equation 

(34) implies that: 

U(c) 
x (d) = _L_ (35.i) 

P J 

U(c) ,__.„ 
x (35.11) 

t(d) =  l      ' 
p J 

In case w   = 0 , Equation (34) implies that: 

*„W> = - 
P/C) (36.0 

p (c) (36.Ü) 
X 

f (d) = uK J        j 

Equations (35.i), (35.ii), (36.i), and (36.ii) yield the relations between the components of 
D/(c), and Dg(d) whenever   J * 0 .It immediately follows that function g solves the pair 
of first-order partial differential equations, seen next, everywhere on R if, and only if, 
J * 0. 

x   - Ut   + p-f   =0 (37-i) 
U U        r   p 

p-jc   - p-U-t   + C2-tn = 0 (37.ii) 
p p u 

Equations (37.i) and (37.Ü) are linear, as opposed to Equations (27.i) and (27.ii), which are 
not. Initially, this fact would seem to be important; but it turns out to be simply a curiosity. 

In order to effectively solve Equations (27.i), (27.Ü); and (37.i), (37.ii), we must 
discuss the properties of these equation systems. Consider the derivatives of / at point c in 

14 



&, and   g at point d in R, and let us write Equations (27.i), (27.ii), and (37.i), (37.ii) in 
matrix form. We arrange these equations in a style to accommodate this, as shown below. 
The form for Equations (27.i), (27.ii) is: 

{U-px+p-Ux}    + {p + 0}   = 0 

—-p +U-U\ + {0 + U] = 0 
p       x x\ t 

(38) 

The corresponding forms for Equations (37.i). (37.ii) are: 

= 0 iJU-L.1* 
C2     p      c2 p \  

+   to + y 
(39) 

{0 +     t }     +     \—'X - —-U-t I     = 0 
P' p   u   p      u[ 

Note that the partial derivatives of / at point c in @ may be represented as the column 
vectors listed following: 

—(c) = 
dx 

P,(0 

U(c) 
(40.i) 

and, 

—(c) 
P/O 

U(c) 
(40.Ü) 

The corresponding partial derivatives of g at point d in R are also represented as column 
vectors, written as: 

dg 

dp 

x(d) 
p 

t (d) 
p 

(414) 
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and, 

dg 
—(d) = 

x (d) 
IT  ' 

t  (d) 
(41.Ü) 

Consider point c in domain 2), and point d in range R corresponding to c under / . Equations 
(38) and (39) motivate the definition of the following matrices at these points: 

A(c) = 

U(c) 

I      2      \ 

[\    P 
<C) 

P(C) 

U(c) 
(42) 

and, 

A(d) = 

(p) (d) - (p ) —•U 
c2 

\         ) 

0 

id) 
(43) 

We also require: 

1   0 

0   1 
/ = (44) 

and, 

N{d) = 

0 1 

(l\ (1 ^ 
— (d)   - —'U (d) 

IPJ (p ) 

(45) 

Finally, we define matrix <J> as: 
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* = 
0 

0 
(46) 

Then Equations (27.i), and (27.Ü) may be written as the following matrix equation at 
point c in domain @: 

A-— + /•— = (t> 
dx        dt 

(47) 

The corresponding matrix equation for Equations (37.i), and (37.ii) at point d in R are: 

A-— + N-— = <b 
dp dU 

(48) 

Note that: 

-f(c)-v (c) * Meyv(c) 
ox       J at      2 (49) 

and: 

Dg(d)-(h) ^-(d)-w(g(d)) 
dp        l 

%d)-w(g(d)) 
du        2 (50) 

where v , v   are real numbers, and are the components of e in @. The real numbers, 
w , w  are the corresponding components of A in R. Letting M be a matrix of elements, 

(m..), multiplying the terms of Equation (47), and M be a matrix of elements, (m7), 

multiplying the terms of Equation (48), we note that Equation (47) is equivalent to: 

v -M'A'—'v   + v 'M'—*v   = d> 
2        dx   l       i     dt  2 (51) 
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and that Equation (48) is equivalent to: 

 dg  dg 
w -M'A-—~w   + w -M-N'^—w   = <J> 

2        3p    i        i dU   2 
(52) 

In the event that M can be found such that its elements, (m^), are not necessarily 0, and such 

that  M is not singular, and   v -M'A = vM = B , then the directional derivative of / in 

the direction of u from c, solving Equations (27.i), and (27.ii), on @ satisfies: 

B-DMie) = $ (53) 

If Equation (53) holds, and M is not singular, then the direction of u from c is characteristic 
of Equation System (27.i), and (27.ii), and the differential equation solved by / on a 
trajectory in that direction is ordinary. Since  M  is a matrix of rank 2, there are two linearly 
independent directions in Q) in which u can be located with respect to c which are 
characteristic. 

In similar fashion, if one can find a matrix, M, such that   w'M-A = w^M-N = B , 

and M is not singular, then the directional derivative of g in the direction of z from d, 
solving Equations (37.i), and (37.Ü), on R satisfies: 

B'Dg(d)-(h) = * (54) 

Matrix, M, is also of rank 2; hence there are two linearly independent directions in which z 
can be located with respect to d in R which are characteristic, as well. 

The condition,   v -M'A = vM = B , requires that: 

muv2U+mi2V2 
, 

m2iv2U+mnv2-r 
L \ v I 

(i»n-v2-p
+m12-v2-tf) 

(m21-v2-p+m22-v2-J7) 

mll'vl 
mn\ *11 *12 

m2l'Vl m22'Vl *21 
*22 

(55) 
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Corresponding to Equation (54), the condition,   w 'M-A = w-M-N = B , requires that: 

'       P   —^ w •—-m 
2C2       11 

/ P — —' 
-w •—'U-m   + w -m 

2-2 11 2     12 

p —1 ( 

w -—-m 
2  „2       21 c 

) \ 

f   1 —) I 

w •—-m 
1   p       12 

\ 

l—
i 

/ 

W '—'Ttl 
1   p       22 

\ 

-w '—'U-m   +wm 
2   _,2 21 2     22 

_ 1        —\ 
w -m   -w—'U'tn 

1     11 In 12 

w -m   -w—-CZ-m 
1     21 1   p 22 

/ 

\ 

) 1 

bU       bX2 

hi       hi 
(56) 

Equation (55), in fact, yields the constraints upon (m„) if M is not to be singular. First, 

Equation (55) requires that these constraints satisfy Equation pairs (57) and (58), seen next. 
The conditions imposed for mu and m12 are: 

m^U-vJ+m^— = 0 

mn-v2-p+m12-(v2-t/-v1)   = 0 
(57) 

The corresponding conditions imposed for m21 and m22 are 
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WI2l(V2-r/-Vl)+W22'V2'y   =  ° 

7n2l'V2'P+m22*(V2"t/-Vl)     =0 

(58) 

Equation (56) yields the constraints upon (miy) if M is not to be singular. This equation 

requires that the elements of (m7.) satisfy Equation Pairs (59) and (60) following. The 

conditions on mn and mn are: 

—       P        1 

m n 
p       1 

/ 

w •—'U + w, *c>        'J "  mi2" 

1 
2     J p 

= 0 

= 0 

(59) 

The corresponding conditions on m21 and m22 are: 

—       P 

mi< 

\ 
w2'—-U + Wl 

m22-w{- = 0 

- m22- w2 + w{--U I    =0 

(60) 

It is clear that M is not constrained to be singular if and, only if, the following determinant 
vanishes: 
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(y2.U-Vi) v2._ 

v2-p        Cv^IZ-Vj) 

=   0 (61) 

On the other hand, matrix M is not constrained to be singular if and, only if: 

H>. 
2c2 

N / 
P      ,r w-—-U + w, — 

2_2                 ! C                     J V 

-My— 
1 P 

1     \ 
w. + W-—-U 

P     J 

=   0 (62) 

Note that Equation (61) requires that: 

v2-(U±C) - Vj = 0 (63) 

Suppose v2-(U + C) - Vj = 0 . In this case, (y^U-v^ = -v2*C , and Equations (57) 

require: 

m    = m  •— 
12 11   C (64) 

Matrix M will be singular unless we incorporate the other form of Equation (63) in Equations 

(58). The other form is: v2-(U-C) - vl = 0 , which means that   (y-U-vJ = v2*C ; 
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whence: 

m    = -m •— 
21 22   p 

(65) 

Let   b  = m  -v,    and   b   = m -v.  .Matrix   B   may now be expressed as: 
J 11     1 J7 2A     1 

B = 
C 

-b •- 
n P 

' C 

7/ 

(66) 

It is apparent from the form of matrix   B  that its elements are associated with the 
characteristic directions in ® as illustrated Table 1. 

Table 1 

v2-(t/ + C) - Vj = 0 

b : n 
v2-(U-C) - Vj =0 

In each of the characteristic directions associated with   b   and   b^ respectively, Matrix 

Equation (53) yields a linearly independent form depending upon D/(c)-(c), written as 
follows: 

\ 
p   + —-U 

\ 

•v   + b- 
l       / 

p   + —-U •v 

n 
(     C 

p       X X 
•v   + b • 

1       II 
—-p   + U 
P    '        ' 

= 0 

•v   = 0 
2 

(67) 

On the other hand, Equation (62) requires that: 
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(C-Wj - p-w2) • (CM*! + p-w2) = 0 (68) 

Equation (68) implies either   (C^ - p-w2)  = 0   or   (C-Wj + p-vt^)  = 0. In the case of 

matrix M, if the first condition holds, then: 

—      P — 
OTi2 = -c'mu 

(70) 

As in the case of matrix M, M will be singular unless the second condition is applied to 
define the elements of its second row. Consequently, 

  C   
m21   =   "-p"'m22 

(71) 

Using Equations (70) and (71), we may write Equation (56) as: 

w -M-A = w -M-N = 
2 1 

m  • — 
11  C2 

'W 

) 

—   P —  P 
-m  ' — 'U + m  - — 

11    c2 11    C 
\ 

•w 

  1 
-m   • — 

22   C 
•w 

—  U     —\ 
m   •— + m 

22   Q 11 
•w 

(72) 

Defining   b2 = m22' — -w2   and   bn = mn
m — -w2 , matrix   B   may be written as: 
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B = 
*! 

-b 

-b ■ n 
U 
—-1 
C 

b-(U + C) 

(73) 

Hence, the characteristic directions for g = f'1, solving Equations (37.i) and (37.ii), may be 
associated with   b   and   b   as follows in Table 2: / n 

Table 2 

b : 

(C-Wj + P'W2)   =0 

(C-Wj-p-Wj)   = 0 

In this case, Matrix Equation (54) yields a linearly independent form in each of the 
characteristic directions, depending upon Dg(d)(h), which may be written as: 

*/[-*p+(tf+C)*p]"w, + b;l~xu + ^C)-tu]-w2 = 0 

^•[-*p+(tf-C")-fp]-w  + &,•[-%+ (tf-cH,]-H>2 = 0 

(74) 

Now consider a particular point, p , in @ and let p be its image under /  in R. 
Without loss of generality, we may select the direction in 3) associated with   b . Since / 

belongs to class C1, and p  is not special, one may apply Inequality (30) to Df(p)-(e) solving 
Equation (53) to construct a unique curve, T7, passing through point p  in the selected 

direction. The condition that / belongs to class C1 implies that Inequality (30) may be used 
to construct T7 as the limit of a Cauchy sequence of continuous curves passing through 

point p . The limit is the unique curve, T7, passing through point p , which has a 
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continuously turning tangent in Q). Curve r7 is a characteristic curve of Equation System 

(27.i) and (27.Ü). It is apparent that Equation (53) admits the construction of precisely one 
other curve, r/7, passing through p , which is also a characteristic curve of Equation System 

(27.i) and (27.Ü). Let us associate T7 with   b , and r/7 with   b , in matrix   B   in the 

subsequent discussion. 
Characteristic curves, T7 and Tn, have images, T/ ^ Tn> üi R under / , which 

intersect at p . Both of these pairs of curves are illustrated in Figure 4. Here,   a7 and   an 

are linearly independent tangent vectors associated respectively with T7 and Tn. Clearly, 

curves fV aD^ TII 
axe characteristic curves of Equation System (37.i) and (37.Ü) provided 

that   J * 0 .In this 
case,   <x7 and   an 

are linearly in- 
dependent tangent t U 
vectors associated 

respectively with p 

and r • Obviously, T7 

and T77 are the images 

of T/ and p77 in @ 

under g , when g 
exists. 

Note that the 

existence of g = /" , 
i.e.   J * 0 , is not 
essential to the 
construction of T7 and 

Tn in 3). This 

development leads to a Figure 4 
class of special wave 
functions which solve Equation (53), but do not require the condition,   J * 0 . The 
expansion of a perfect gas from an infinite reservoir into a void main is described by one of 
this class of special wave functions, which is described in Section 5. 

Continuing with the condition that   J * 0   , let a7 and On be distance parameters 

associated with T7 and r/7, respectively; and let o7 and On be distance parameters 

associated with T/ and Tn-1° domain 2>, we may make the following table of associations 

between the characteristic directions and derivatives with respect to the distance parameters: 

■*JC 
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Table of Associated Characteristic Directions and Total Derivatives 

and 

and 

r • *** 

T: 

r : 
// 

r : 
// 

1 da 
i 

dt 
2 da 

i 

dx 
}    = 

1 da n 

dt 
2 da n 

Corresponding Associations in Region R 

r: 

r,: 

dp 
w   = 

1 da 
i 

dU 
w   = 

2 da 
i 

r„: 

r„: 

w   = 
1 

dp 

d~a~ n 

dU 
w   = 

2 da~ n 
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Now at point p in domain ®, Table 1, found on page 22, demonstrates that the domain 
points of function /  solving Equations (27.i) and (27.ii) satisfy the ordinary first-order 
differential equations shown in Table 3, in the indicated characteristic directions. 

Table 3 

T . dx dt r. {U + Cy— =o 
da daj 

r • dx       , x    dt 

n n 

Equations (67) yield first-order, ordinary differential equations for the corresponding range 
points of / in the directions of T7 and r/r These Equations are illustrated in Table 4. 

Table 4 

dp       p   dU 
-J- + SI-  = 0 
da       C da 

i i 

p . dp        p   dU 
n da„      C dan n n 

= 0 

In case   J * 0 , function g exists such that g = f   . Set R, in the ( p ,U) plane, is then in 
the domain of g , and g solves Equations (37.i) and (37.ii) on R. At point p in set R, 
Table 2, found on page 24, demonstrates that the domain points of function g solving 
Equations (37.i) and (37.ii) satisfy the ordinary, first-order differential equations shown in 

Table 5, below, in the characteristic directions, r  and r » ^ R- 

Table 5 

r: .£[£. + L.— = o 
da       C da 

i i 

r~: _^E_ - L.JE. = o 
da        C da~ n n 

Equations (74) yield first-order, ordinary differential equations for the corresponding range 

points of g in the directions of r  and r . These Equations appear in Table 6 following. 
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T: 

r : n 

Table 6 

dx 

da 
i 

dt 
- (u + c)--= = o 

da 
i 

dx 

da~ n 
-(u-cy      - o 

da n 

The Second Law of Thermodynamics and the Perfect Equation of State for a 
calorically perfect gas may be embodied in Tables 4 and 5 to produce particularly simple 
first-order differential equations. In each characteristic direction in @, at a point, we write the 
following associated forms, noting that1 R is the gas constant for the Perfect Equation of 
State in Tables 7 and 8: 

Table 7 

« ^ ds y     n  dT       1   dp 
1 ' da,      y-\       dat      p   do. 

r : P(On) = 9(onyR-T(an)        T.JL = JL.R.JL - I.-* 
" dan      Y-l       dan      p  dan 

In each characteristic direction in set1 R, the domain of function g , at a point, we write the 
following corresponding forms: 

Table 8 

_ _ _ ds   _    Y dT _   1    dp 
f, pia,) = piaJ-R.Tia,) T' ^ = T~l'*'^ ~ ~?'^ 

      „ m  ds Y dT       1    dp 
jr. p(an) = p(anyR-T(an)        T-— = "V **-== " --j= 

ii da„      Y_1       da„      P   da, 'ii      ' **"//      ■        // 

1R refers to the range of / except when used in the context 28   of the Perfect Equation of State. 



From our hypothesis that the Euler Equations of Motion hold, it has been shown that the 
wave is isentropic. Hence, the thermodynamic relations of Table 7 result in the following 
ordinary, first-order differential equations for the range points of / , holding in each of the 
characteristic directions in S> : 

Table 9 

r.- dp 2 p dC 

Oj      y-1   C ddj 

r : dp 2 p dC 

an      y-1   C dan 

dp p   dU 
-J- + — •  = 0 
da C da 

i i 

dp       p   dU 

da        C da n u 
= 0 

For completeness, Table 10 illustrates the ordinary, first-order differential equations in each 
characteristic direction in set R, the domain of inverse function, g . 

Table 10 

_ , . dp       p   dU 
T : ^r  =  r--^'— —  + —•   = 0 / 

// 

dp 2 p dC 

Y-1   C däj 

dp 2 p dC 

Y-1   C  da~n 

da       C da 
i i 

r : J2L = _r_.-u.J2L ___ _ _£..___ = o 
da        C da n n 

Through Tables 1-10, one can see that function / , solving Equations (27.i) and 
(27.Ü), is transformed through a one-to-one correspondence to characterize the solutions to the 
following set of ordinary, first-order differential equations which appear in Table 11: 
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Table 11 

Characteristic Domain @ Range R1 

_, dx dt 
T: -{U + Cy— = 0 1 da do 

T ■ dx dt 1//- —-{u-cy—=0 ,   ,        , 
dan dan Y-1   dan      daR 

2 

Y-1 

dC 
do, 

+ 
dU 
da. 

= 0 

2 dC dU 
= 0 

The corresponding ordinary, first-order differential equations applying to inverse function g 
are illustrated in Table 12; again, for the sake of completeness. 

Table 12 

Characteristic Range 9 Domain R1 

F: 
dx 

da 
i 

dt 
-(u+cy      - o 

da 
i 

2     dC      dU 
+ 

Y-1   da,      da, 
= 0 

f~: 
dx 

da~ n 

dt 
-(U-C)'        -o 

da n 

2      dC        dU 

Y~l   däZ      dal 
= 0 

Letting2  a(G/) ,    ß(o;) ; and   K(0//) ,    ß(0//) , be strict functions of the 

distance, or curve parameters of characteristic curves,   T7 , and   Tn , and requiring that 

each of these distinct function pairs be defined at each point on each of the characteristic 

1 R is range of /   transformed according to the relations of Table 7. 
2 <X(o )   '    a(a )   > an^    6(a)   ♦    ß(a )    are, respectively, distinct pairs of functions. 



curves,   T7 , and   Tn , indefinite integrals may be written on these curves in the form 

seen in Table 13: 

Characteristic 

Table 13 

Domain & Range R1 

x - f(U + C)-dt = a(an) J_.c + u = ß(0ff) 

n x - Uu-cydt = a(o-p — C - U = ß(o7) -1 ' 

Table 13 may be thought of as the restriction of / to T7, written as / I" T; , in the first 

row, and as the restriction of / to Tn, written as / I" Tn , in the second row. 

The corresponding result for g = f    is shown in Table 14, where2   a (a,) , 

ß(o~) '■> an(i   0L(O~) '    ß(o~) ' are ^e corresponding strict functions of the distance, or 

curve parameters of characteristic curves,   r7 > m&   Tn '■ 

Characteristic 

Table 14 

Range % Domain R1 

r: x - ku + cydt = a(an) — 'C + U = l(on) 

n- x - Uu-cydt = 0C(a7) -C - U = $(<,,) 

1R is the range of / transformed according to the relations of Table 7. 
2     a Co")   '    <t(ö~)  ' an^   ß(ä~)   '    ßfä-)    are. respectively, distinct pairs of functions 
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Table 14 may be thought of as the restriction of g tor,, written as g  T f, , in the first 

U 

row, and as the restriction of g to Tn, written as g \ r/7 > üi ^ second row. 

Noting that for 
each point p  in S>, the 
domain of /  solving 
Equations (27. i) and 
(27.ii), has two 
characteristic curves, 
T; and r/7, passing 
through it in linearly 
independent directions, 
and a single pair of 
distance or curve 
parameters, a7 and on, 
associated with it, one 
may create a mapping 
from the   (x, t) pair to 
the     (Oj, on) pair 
associated with each 
point in @. Let  # be 

the set of (Op an) Figure 5 
pairs under this 
mapping. This is an injective mapping, written symbolically as : 

+x 

Jl:® <$ (75) 

Referring to Figure 5, suppose we choose to move along the characteristic curve T7 passing 

through p . In this case, curve parameter Oj varies with position on T7, but On remains 
unaffected, since the other characteristic direction is linearly independent. 

LetJr= JU\T , and let #r be the range of JIT. Then   Dmn JV(\3> = Tj and 
i 

Rng e/Kl ^ = 9oT . Using set builder notation,   J\f may be described as: 

JT = {(n, m) | [n = (x, t) A n e r7 A m = (a7, off)Äme?r]Ä tni=n2 ~ mi=m2 M 
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Clearly, Jr must have the property that V n^ n^   n^ i%2 e T; -* (on)i = (o7/)2 if Tn is 

not to be simply a fixed point. Evidently,   a(o77)   and   ß(a77)   have fixed values on 

characteristic T7. We could, as well, have chosen characteristic curve Tn to construct  Jr ; 

hence, we conclude that  a(o\)  and   ß(o"7)  
nave ^d values on characteristic T77, also. 

Turning again to Figure 5, let us consider point p in R, the image of point p in 3> 

under / . Now R is the domain of g , and so p has two characteristic curves, T7 and r^ > 

passing through it in linearly independent directions, and a distinct pair of distance or curve 
parameters, 07 and On, associated with it, just as was the case with p in 3. Choosing r > 

and letting ~%>   be the set of pairs, (a/5 07/), associated with the pairs, (p,  U), along p , 

we may write the following injective mapping on R: 

(76) Ji: R    U    9g 

Proceeding in the same manner with function g as we did with function / , let 

~Ä = ~Jl\Yv and let "^ be the range of "Jr. Then   DmnJrf\R = T^    and 

RngJ^ f\ 9P = ^y . Using set builder notation,   Jr may be described as: 
i 

JT= {(n, m) | \n = (p, u) An eTj A m = (ö, <T) A m e «f ]A[n~=n2 => ~ml=m2 ]} 

We find that Jr has the property that   V n~, n",   ~n, n~ e f" =* (ö~j), = (ö~j\   if f1! is 

not to be a fixed point. This shows that   a(o\I)   and   ß(ö\r)   have fixed values on 

characteristic p~. Obviously, we have, without loss of generality, shown that   a(ö\)   and 

ß(ö~)   have fixed values on characteristic p , in addition. We note here that    ß(o\)   and 

ß(o )   are sometimes called the Riemann Invariants. 

Continuing, we shall refer to T7 and T7 as characteristics of Type I in 3); and we 

shall refer to Tn and Tn as characteristics of Type II in R. The pairs of Type I and II 

characteristic curves form an untangled net covering domain 3 of / , as shown in Figure 5. 
The pairs of Type I and II characteristic curves form an untangled net covering domain R of 

g = f   , when it exists. This corresponding net is also shown in Figure 5. 
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5. SIMPLE, ONE-DIMENSIONAL WAVES 

Our characterization of simple waves begins with the following definition. 

Definition. Suppose the there exists a domain @ in the (x, t) plane for which /  solving 
Equations (27.i) and (27.Ü) belongs to class C1. J Let us suppose that all of the characteristics 
of a single type covering @, e.g. Type I, are straight lines. Then if R is the plane of (p,  U) 
pairs, we say that this function, symbolized by: 

/: 0 - R 

is a simple wave. 

Theorem. A function /  which belongs to class C1, and which solves Equations (27.i) and 
(27.ii) on domain 3) in the (x, t) plane, is a simple wave on & if, and only if, Determinant J, 
defined by Equation (32), vanishes at every point in @. 

Proof. Consider the directional derivative of   /  at point p in @, and recall its form from 
Equation (31) in Section 4. We write: 

w 
l P       P V 

l 
Dßp)<e) = = • 

w u   u V 
2 X            t 2 

(77) 

Also recall that the determinant of D/(c)-(e) is: 

J = 
P     P rX t 

U    U 
X t 

(78) 

1A function on a domain & in Rp is of class C1 if all of its partial derivatives exist and are continuous on 3). 
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Now, by Cramer's Rules, the following Equations must hold: 

J-v1 = 

w p 
1 rf 

w U 
2 t 

(79.i) 

7-v2 = 

p w vx 1 

(7 w 
x 2 

(79.Ü) 

Suppose   7 = 0 ; but let us require that an ordered pair, (Vj, v2) , exists at every 
point in @. In this case, the following identity holds, provided that to exists : 

U       U 
t X 

W 

=   G) (80) 

Pr w 

Now CD exists everywhere in 9) if, and only if,  wy * 0  at every point in @; which will be 

the case if U depends upon p everywhere in @. But we are assured by Equation (24.iii) 
that this condition holds . Also, since Equations (27.i) and (27.ii) hold everywhere in Q), the 
condition that   7 = 0, when applied to them, guarantees that: 

C 
0) = ± (81) 

Without loss of generality, we may set   <o = + —   at point p in Q). Continuing, the 
P 

condition that   7 = 0, when applied to Equations (79.i) and (79.ii), requires that: 

w -U  - w -p   = 0 
1      x 2   rx 

(82.i) 

w -U - w -p  = 0 
It 2 Vt 

(82.Ü) 
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We reiterate that the isentropic condition, guaranteed by Equation (24.iii), implies that o 
exists everywhere in 3). Hence, Equations (82.i) and (82.ii) reduce to the single condition: 

w   - --w   = 0 (83) 
l      c    2 

Let o be a general distance parameter in the direction specified by  €   in D/(c)(e), 

and let us associate the following derivatives with (v1} v2) and (wp w2) at a point in 

domain ®: 

dx dp 

dt dV 
v    =   w    =   

2      do 2      da 

Then   J = 0   implies that Equation (83) has the following invariant form, for any direction 
specified by  e   in D/(c)-(e), at point p  in &: 

^-l.fL-0 (84) 
da      C  da 

C 
We could, as well, have made the choice1,   &> = -—. 

P 

Recall from Section 4 that the existence of g = f , i.e.   J * 0 , is not essential to 
the construction of T7 and Yn in %. Hence, we may align D/(c)-(e) at point p in @ with 

the characteristic solutions of Equation (53), which can be constructed even when   J = 0 . 
When we do this, the following associations appear in the characteristic directions, as 
illustrated in Table 15 : 

dp       p  dU 1 The form of Equation (84) would be   -—+—■-—= 0 in this case. 
da      C do 
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Table 151 

Characteristic Associations When   J = 0 

T: T : 
7 77 

dx dt 
- - (I/ + C)-— 
j da 
i i 

  _(I/ + C).  =0 «*       (11   r.    
M    _n 

d°- d°- la--{U-C)lo--0 

dp       p   dU _      * dp       p   dU * 

dol      C dOj don      C dan 

dp       p   dU dp       p   dU 

da       C da da        C  da 
II 77 77 

Both ordinary, first-order differential equations for the range points of / on   T    apply, so 

we conclude that on this Type I characteristic, the range points of / satisfy the conditions 
shown below: 

dp_ 
dOj 

= 0 

dU 
da, 

= 0 

P = G(an) 

U = H(aa) 

where   G(on)   and   H(on) are strict functions of the curve parameter for a characteristic 

of Type II intersecting   T   . 

1 The    *   appearing in Table 15 indicates the form of Equation (84) when D /(c)*(e)   is aligned with the indicated 

characteristic, and   7 = 0. 37 



Since the characteristic directions at point p  are linearly independent, curve 
parameter   an   is fixed at every point on   r   . Since point p was chosen arbitrarily, it 

follows that when   J = 0 ,   G(off)   and   H(on) have fixed values all along   T{   passing 

through point p . In view of the condition that the wave is isentropic, we refer to Table 7 
Jrp 

and find, consequently, that   — = 0 . It follows that   C = Jf-R-T   is necessarily a strict 
do 

function of   o„   on   T   . Hence, Table 15 shows that characteristic   TJ   is a straight line. 

Letting   A(a )   and   B(oß)   be two more strict functions of a curve parameter for 

a characteristic of Type II intersecting T , the equation for TJ , and the equation for the 

Riemann Invariant on T appear on the first line of Table 16. The corresponding forms for 

the Type I characteristic appear on the second line: 

Table 16 

Characteristic Domain S> Range R 

r/: x-(U + cyt=A(an) _1_.C + U = B(an) 
Y-l 

r : n x - f(U-cydt = AiOj) —j-c - U = Bio,) 

Clearly, A(Oj)   and   B(o/) ; and   A(on)   and   B{qn)   have fixed values, as well, on the 

indicated characteristics1, in their associated rows, in Table 16. 
On the other hand, suppose   T    is a straight line in @. It can be shown, as a result, 

that — = 0   and     = 0   everywhere on   T   . Consider a particular point p on   T   , 
dOj da, 7 ' 

and note that the following matrix equation must hold: 

1  A(o )   ,   A(a )   ; and    B(o )   ,    B(o )    are, respectively, distinct pairs of functions. 
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Ujp)   -pfp) w(p) 
= J- 

\(p) 

-uip) p<p) W2(P) [v2(p)J 
(85) 

where the pairs , (yv v2)  and   (Wj, w>2) , are defined on page 12. By hypothesis,   r 

passes through p in % thus one of the pair,   (Vj, v2) , must be different from zero. If we 

dp 
require   J * 0 , then Equation (85) implies that   w  = ——   and   w. 

da. 

dU 

To, 
; but either 

'/ —i 

\w | > 0   or   |Wj| > 0 , in this case, contradicting our supposition. Hence   J = 0 , and 

our theorem is proved. ■ 
Each of the 

characteristics of Type   ^ 
I form a straight line 

for our choice of 0)  in 
Equation (81). A sketch 
of the characteristic net 
for such a wave is 
shown in Figure 6. The 
range of /  on @ is 
the single curve in the 
(p,  U) plane, depict- 
ed as R in Figure 6. 
Every point on the 

r    illustrated, such 

as points px, p2, p%, 
and p4, maps to the 

single point, p , on 
curve R, for the 
example shown here. 

A simple wave 
whose straight-line characteristics in domain 3) are of Type I is a forward-facing wave. If we 

C 
had chosen   (o = - —   at point p in @, the straight-line characteristics would have been 

P 
of Type II, and the simple wave would have been backward-facing. If all of the straight-line 
characteristics intersect at a point on the bound of 2, the wave is centered. 

The head of the wave of interest in this analysis is located at plane 0-0 in Figure 1. It 
is of characteristic Type II. The flow enters the wave here at critical velocity and proceeds 
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into the rarefied region at supersonic speed. It is clear that the thermodynamic state on the 
head characteristic is constant, and that characteristic is, therefore straight. Obviously, every 
characteristic of Type I in the domain 3 of this wave has an intersection with the head 
characteristic at plane 0-0, and each of these intersections is at the same thermodynamic state. 
It is easy to show that   J = 0   at every point p in 3, as a consequence. Hence, the subject 
wave is a simple,  backward-facing, centered expansion wave - sometimes known as a 
centered rarefaction wave. 

There is a shock at the tail of 
the backward-facing expansion wave 
which is not in the domain of the <j. ^. v* 
wave, and to which characteristic 
theory does not apply. We need to 
establish that this shock exists. Since 
every characteristic of Type II is 
straight in domain 3, one can show 
that the infimum #, or greatest lower 
bound of characteristics , is also a 
straight line, i.e., it has a constant 
velocity of propagation. Consider 
Figure 7 and let a fixed rectangular 

control volume 4 be such that face L 

v^////'7/yMJM//y//y/y//yyy^/^y/^^^^^ 

Rarefied Gas 

■&-U 

Vacuum 

im« 

^////y////y/^/y^>w^^ 

Figure 7 
of 4- is to left of <?, and such that face 

R of 4 is to its right. Then control 

volume 4 must proceed at constant velocity,   V   , which is the velocity of propagation of & 

The right face of control volume 4 is in vacuo. This being the case, it must be that    p = 0 

at R in Figure 7, where p symbolizes static pressure in this portion of the discussion. 

Clearly, L is interior to domain 3; hence   p > 0   at face L. 

Recall that the flow in domain 3 of the expansion wave is isentropic. The fact that the 

static pressure, p , at a point  c  in the interior of 3 is such that   p(c) > 0   implies that 

both   p(c) > 0   and   u(c) > 0 . If the gas is calorically perfect, the thermodynamic 

properties at point c are related to those at face L by the following two equations : 

u. 

u 
(c) 

'V 
'(c) 

Y-l 

(86) 

and 
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PL 
l      \ 

Y-l (87) 

'(c) (c) 

Continuing, let us establish the following definitions with reference to a-, where subscript L 
refers to the variable value at face L in Figure 7: 

Definition Face L Face R 

Total Energy (uL-vJ 
e   = u   + 

e* = 0 

Total Enthalpy PL 

PL 

hR = 0 

Impulse 
h'-PL- PLWL-VJ '* = 0 

Mass Flux mL = ~ PL<UL-VJ 
mR = 0 

Clearly, every nested sequence of control volumes (i}HB, by definition of d, contains 
$, and has as its limit, $ with faces L and R on its left and right, respectively. Let us refer to 

this limit as A M. We now observe that if the gas is calorically perfect, the specific internal 
energy, and the sound speed C, are related according to Equations (88) and (89), shown next: 

PL 
— - CY-D-Kx. 

(88) 

VPL 

N 
(89) 

41 



Now in the case of our backward-facing expansion wave, one can show that Riemann 

Invariant  B(on) , from Table 16, is fixed everywhere in 2>. Furthermore, for the limiting d 

containing 3, i.e., d-M, Equation (86) implies that uL = 0 .It follows from Equations (88) 

and (89) that UL = B(pn) for the limiting case. This velocity is the upper limit, or escape 

velocity for fluid elements in @. It is clear enough, then, that V^ = B(on) as well. It now 

follows that with respect to d-M : 

K - K - o <,oa> 

W. - 
(90.ÜÜ) 

mL  =  mR   = ° 

Equations (90.ii), (90.iii), and (90.iiii) are, respectively, conservation of energy, 
momentum, and mass flow in the reference frame of $. They constitute the Rankine-Hugoniot 
conditions, and are satisfied with respect to the limit control volume, &M. Note that they are 
trivially satisfied under the condition of no mass flux at either face of the wave, as would be 
the case if $ were a contact surface. This condition would normally require that    UL = UR , 

making the convective gas velocity continuous at the location of &. However, 

pL = pR = 0   for bu containing tf, so   mL = mR = 0 even when   UL± UR . Since 

UL = B(on) at face L, and  UR = 0 at face R, it is clear that $ c 4-M is the site of a 

velocity discontinuity - an abrupt velocity jump from   U = 0   to   U = B(on)   propagating 

at escape velocity for the expansion wave on domain 3). Hence $ is a shock with its front 
facing the vacuum, and its back facing the expansion wave. 

6.        CALCULATION OF THE ONE-DIMENSIONAL, BACKWARD-FACING 
EXPANSION WAVE 

Consider Figure 1 from Section 3. We are assuming that the flow is one-dimensional 
everywhere, and that the reservoir is infinite in extent. Hence, when the rarefaction is initiated 
at time zero, there can be no influence on the thermodynamic state of the reservoir. There can 
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be no local flow effects in the gas to the left of plane 0-0 without obviating the one- 
dimensional flow field hypothesis. This is to say that the reservoir has sufficient depth to 
maintain a fixed stagnation pressure and temperature everywhere to the left of plane 0-0. 
Consequently, the reservoir is able to maintain a constant, perpetually choked condition at 
plane 0-0 after the initiation of the rarefaction. Letting   TQ   be the stagnation temperature at 
plane 0-0, and   p    be the stagnation pressure there, these thermodynamic quantities are 
fixed at plane 0-0 for all time following the initiation of the rarefaction. The gas velocity at 
plane 0-0 is fixed after time zero, as a result, maintaining a value expressed as: 

U   = 
cr 

2tRTo (91) 

N (v+1) 

The head of the wave is adjoined to plane 0-0, which is maintained at a constant 
thermodynamic state. Hence,   J = 0   everywhere in domain @ of the wave, with the 
consequence that it is a simple wave. Furthermore, we deduce that the lead characteristic, 
which is at the head of the wave, must permanently coincide with plane 0-0 after time zero, 
since the wave cannot penetrate the reservoir and disturb its thermodynamic state. This means 
that Type II characteristics must be straight, making the wave backward-facing. This means 
also that there exist curve parameters   o7   and   an   for characteristic families   Tj   and 

T^ ; and functions   A (o77)   and   A (a7) , and functions   B£on)   and   Bjfßj) , such 

that   A (OJJ)   maintains a fixed, but distinct value for each characteristic   Tj , and   Bj(on) 

maintains a fixed value for all characteristics   T7 ; and   A (o7)   and   B//(o7)   each 

maintain fixed, but distinct values for each characteristic   T/7 . In this case, we have the 

following correspondences on the characteristics of the expansion wave in domain @: 

Table 17 

Characteristic Equation in Domain ® Riemann Invariant 

r/: x - J(U + cydt = Afan) —-C + U = Bfan) 

x-(U-cyt=An(oI) ±_.c.u = B{a) 
V-l n 

r : Y _ (TT-r\-t = A fn \ 2 
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It is obvious that the Type I characteristics span the wave; hence   Bf.an) is 

determinate at plane 0-0, the plane of choked flow, as well as having a fixed value 
everywhere in @. Note that at plane 0-0, we may write: 

C *U*U (92) 

In view of Equation (92) and the definition of   Bfan) , we find that: 

BW - 
1   r ° (93) 

M    (Y-i)2 

Let   e   be the total energy of the flow at a point m  in domain @ and let   p-v   represent 

the flow work required to compress the flow adiabatically from its thermodynamic state at 

limit velocity to its actual thermodynamic state at point  m . Also, let   p *v    represent the 

flow work to adiabatically stagnate the flow from that same thermodynamic state at limit 

velocity. Continuing, let   u    represent the local stagnation internal energy, and note that 

e   = u   . Now the First Law of Thermodynamics requires the change in total energy 

between these two states, at point  m , in our adiabatic system, to be a consequence of the 

difference in flow work required to reach each of them from their common thermodynamic 
state at limit velocity. This condition is expressed by: 

(es - e) + (p;v  - p-v) = 0 (94) 

Let   T   represent the local stagnation temperature, and let   Tz   represent the local static 

temperature. Introducing the Perfect Equation of State and, the assumption that the gas is 
calorically perfect, Equation (94) becomes: 

R(T-T) - — + R(T  - T) = —L—-R(T-T) - — =0 (95) 
(y-1) s     z 2 s z (y-1) *     z 2 
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Under the assumed gas properties, we may write: 

^ 
C =   NRT (96) 

It immediately follows from Equation (95) that at every point in @: 

2 2 
U   = 

(Y-i) L 
yRT - C 

s 
(97) 

Let us turn now to the Riemann Invariant on characteristics of Type I; and recall that 
it has a fixed value everywhere in 3), determined by Equation (93), as a result of the Type II 
characteristics being straight lines. We find that: 

Ul - BPnf ~ T^iT H°i>C + 
(Y-l) 

(98) 
(Y-l) 

Hence the stagnation temperature   T    may be written in terms of Riemann Invariant 

Bfan)   and local sound speed C at every point in QÖ. Equations (97) and (98) imply that: 

1 
T = — (y-l).  - 2C-B£on) + -— -c2 

IY-IJ    . 
(99) 

Differentiating this expression with respect to sound speed, we find that: 

dT 

dc    yR c - H°J (100) 

dTs 
Noting Equations (91), (92), and (93), we find that   — = 0   at plane 0-0 and 

dC 

decreases monotonically with decreasing C. Hence, Equation (100) implies that  T* , the 
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supremum of   T  , is located at the back face of shock $ seen in Figure 7, and propagates 

with it; and   T    , the infimum of   T  , is permanently located at the plane of choked flow. 

It follows from Equations (91), (92), (93), and (99) that: 

T    = T (10U) 
s* 0 

T   = 
s 

•T (101.Ü) 

Equation (99) establishes that   T   is a strict function of  C on Type I characteristics. 

Our problem is to calculate the mapping of   J   on domain S> in the (x, t) plane. Consider 

Figure 6 again and take account that in the case of the backward-facing, simple wave, the 

roles of the   T7   and   Tn   characteristics are reversed from those in the mapping portrayed 

there. For the backward-facing expansion wave, every characteristic   1^   maps to the same 

single curve R in the ( p ,U) plane. In consequence,   JB7(O/7) , as defined in Table 17, is 

fixed for every point on R. Now note that selection of a point   p   in@ establishes a unique 

o   and o    on a characteristic    T7 , and thus establishes a point   p   on R.  Clearly, this 

is a unique point in the ( p ,U) plane; hence both p and U are uniquely determined. We have 
simultaneously uniquely determined   C , as can be seen by utilization of the fact that 

Bio-)   is a constant function on @; but then Equation (99) may be used to establish a 

unique value of   T   which corresponds only to our unique value of C. 

Continuing, the unique   o7 at point   p   establishes the fixed value for A^Oj) 

corresponding to the particular  Tn passing through   p , upon which U and C are fixed, 

since a Type II characteristic is a straight line in @. Hence f \ Tn = p   for   Tn   passing 

through  p in @. It is at once clear that selection of point   p   in @ establishes / \ Tn in 

its entirety for   T77  passing through point   p . 

Letting C   and p   be, respectively, the sound speed and gas density at the plane of 

choked flow, we note that these quantities are fixed for all time. But the isentropic constraint 
implies that C and  p   at point   p are related to C   and p ^ according to: 

P. 

2 

c 
Y-l (102) 
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The preceding equation shows that the value of C corresponding to point   p   on R is in 

one-one correspondence with   p   at that point. Defining    T   as the mapping of domain & to 

the set of ( T , U) pairs1 corresponding one-one with the ( p ,U) pairs comprising curve R, 

we have the following material equivalence: 

ftrn*T\rn (103) 

By Equation (102) we have thus shown that   T r Tn   is also established in its entirety in 

3) for   T/7   passing through point  p . Since   T \ Tn   is known at plane 0-0, the plane of 

choked flow, and is stationary there, we assert that the properties of the simple - wave 
mapping: 

f:@^R 

permit the exact calculation of the entire stagnation temperature mapping on Si. 
Note that this wave is centered at point (0, 0) in the (x, t) plane, and let us refer to 

this point as   0 . This means that every characteristic   Tn   in domain S> must have point 

0   as a limiting point. Inspection of Table 17 shows that   AjfOj) = 0   everywhere in &, 

and hence is known a priori for every value of  a; in Q), as a result. 
In order to construct the mapping: 

T:@ -* R 

we need to know the stagnation temperature,   TQ , at plane 0-0. If we wish to construct  / 

in conjunction with   T , the stagnation pressure,   pQ , must be known at plane 0-0, as well. 

Given these quantities, let us select any   T   such that   T   <. T< T   and solve the 

following quadratic equation for C: 

2 

■L—   C2   - 2C-BXa„) + (Y-l)-  - VR'T = 0 UU4' 
Y_!j in 2 

1 Refer to Equation (99). 47 



dTs 
The root for which   — <. 0 , as determined from Equation (100), is the unique value for C 

dC 

corresponding to   T   for every (x, t) pair in @ mapping to   T  . Now   Bfon) is 

determinate from Equation (93); hence U is determinate from the Riemann Invariant in the 

first row of Table 17. This establishes the appropriate point   p   in the range of   T . By 

Equation (102), point   p   in the range of /   is also established. One can see that there 

exist unique   U(p)   and   C(p)   such that there is a family   {£ }   x 2      of lines expressed 

as: 

L^ = lx-(u(p)-C(p)}t   = {Const} t 

and such that  / \  {L } =    p . Obviously, there exists a such that   L   = Tn , 
a   ct=l, 2, ... fit " 

where   T     is the unique characteristic of Type II mapping to point   p , for some member 

of   [L } . In our case,   {Const}    = A Jo.) = 0 ; and since   T     corresponding to 
a   o=l, 2, ... a 11     i u 

point  p   must be limited at 0 , we conclude that it is completely described in domain @ by: 

X-(u(p)-C(p))t   = 0 (105) 

Thus, when   T has been established, one may establish a point   p   in the range of function, 

T ; and thence establish the entire mapping   T  T Tn = p . Since we are free to pick any 

T   such that   T t <. T < T* , and since the entire mapping: 

T:0 - R 

is the union of mappings   T  \ Tn , a procedure for the exact calculation of the mapping of 

T    on domain & is established. s 

It is not necessary for the calculation of the exact mapping,   T , to establish the 
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trajectories of the   T7 

characteristics. However, we 
may wish to establish these 
trajectories in the (x, t) plane 
in order to visualize the 

properties of   T .Consider 

point o in Figure 8, 
and let us suppose that   T 
is known exactly there. This 
means that U and C are 
exactly known there, as well, 

since   Bfon)   is known and 

fixed at every point in $1. 
Suppose that U and C are 

known for another   T n X 

Figure 8 
characteristic in domain &. 

Our problem is to calculate the coordinates of the intersection of the new   Tn   characteristic 

with the   Tj   characteristic passing through point o. 

Recalling that   o7   parametrizes   r7 , and letting   A a7   be the difference between 

the values of   o7   at points o and q, we note that the Mean Value Theorem guarantees the 

existence of a point m on   T7   between o and q such that: 

x(q) - x(p) = [U(m) + C(m)]{t(q) - t(o)] (106) 

But   BfQjj)   is fixed throughout @. Hence, Equation (106) becomes: 

X(q) - x(o) = */**> + (n) 
Y-lJ 

■C(m) 1{q) - t(oj\ (107) 

1 Refer to Equations (100) and (104). 49 



We shall assume that C is infinitely differentiable with respect to   o7 . In this case, there 

exists a real number, K, such that   0 £ K <. 1  , and such that the following Taylor's 

expansions hold: 

-III, dim) C"(m)     2 2      C'"(m)     3 4      3 

1! 2! 3! 
(108) 

and 

Cy(m) C7/(j«) 2   .     2 

cV) 
3! 

(l-X)3-(Ao7)
3 + 

(109) 

Letting 

Cip) = 
Cip) + C(«) 

we may write: 

C(p) = C(m) + ^l-(l-2Ä)-Ao/ + -^•(l-2ff+2^2)-(Ao/r + 

C'V) 
2-3! 

•(l-3£+3£2-2Ä:3)-(Aa/)
3 + 

(HO) 

If   Jt(g)   is the predicted value of x at point q using   Cip)   in place of the correct mean 

value for C, Equation (107) implies that: 

(y-3) 
X(q) = X(p) + H°n) + 

lY-lJ 
■Cip) m - tip) an) 
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Apparently, Equations (107) and (111) imply that: 

X(q) - x(q) = 
y-3] 

U-iJl 
C'(m) C"(m) ,     4     2 

2-1! J       2-2! J 

C%) 
2-3! 

•(l-3Ä"+3^ -2A: )-(Aa7)   + - *fo) " *(<>)] 
(112) 

We note that *(<?) " tip) Ao. This inequality implies that: 

(Ao)n_1{%) -**)]   s  (Ao,)" 
Consequently, the following inequality holds. 

x{q) - x(q) 
Y-3 

Y-l 
——l-(l-2£)-(Aa,)2 

2-1! 7 
cV) 

2-2! 
•(l-2Ä'+2Ä'2)-(Ao/)

2 

C%) 
2-3! 

(l-SJf+S^-^^-CAo^ 
(113) 

The lead term of Equation (113) shows that the use of the average value for sound speed C 

on an interval of  T7  in 3) results in a second order error, expressed as  0(Ao7)  , in X(q). 

If the coordinates of point o in @ are known, and   T  is known there; and   T  can be 

established at some other point q on   T7   passing through point o, then the coordinates of q 

in & can be established to   0(Aa;)   . Note that the   Tn   characteristics are centered at the 

origin of coordinates. Since they are straight lines in &, we may write: 

X(q) = [U(q) - C(q)]-t(q) (114) 

Since   B£pn)   is fixed throughout 3), Equation (114), which is exact, becomes: 

(v+1) 
X(q) = */**> Y-l 

•C(q) m (115) 
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7 

Let   At = t(q) - t(o)   and   Ax = x(q) - x(o) . Then, to within   0(Ao;)   , the 

following pair of equations exists: 

xiq) = x(p) + Ax (H6.i) 

Ax x(q) 
t(q) = t(o) + 

W + 
(Y-IJ 

C(p) */°ir> C(q) 
(116.Ü) 

If point (x(o), t(o))   is established on a   T;   characteristic, then Equations (116.i) and 

(116.Ü) establish point   (x(q), t(q)) on that same characteristic to within   0(Aop   . 

7.        RESULTS FROM EXAMPLE CALCULATION FOR AN INFINITE RESERVOIR 
SUSTAINING STAGNATION PRESSURE OF 65.0 PSIA AND STAGNATION 

TEMPERATURE OF 740 °R AT PLANE 0-0 

Let us proceed with the calculation of a backward-facing expansion wave issuing into 
a void main connected to an infinite reservoir containing standard air, and maintaining a 
stagnation pressure of 65.0 psia, and a stagnation temperature of 740 ° R at plane 0-0, the 
plane of choked flow. A characteristic net on domain @ in the (x, t) plane for this system, 
represented by Equations (27.i) and (27.ii), is illustrated in Figure 9 on the following page. 

The initial and boundary conditions are given at point (0, 0) in @; with x = 0 being located 

at the plane 0-0.  The line (0, t) defines the lead   Tn   characteristic in @. The 

thermodynamic state is constant on this line since constant stagnation pressure and 

temperature are perpetually maintained at plane 0-0. Hence,   J = 0   throughout @, and    U 

and   C   are each fixed on each   Tn   characteristic. It follows that each   T/;   characteristic 

is a straight line in the (x, t) plane; but each   Tn   characteristic carries a different 

thermodynamic state, and has a different slope. The wave is centered at (0, 0), i.e., the 
characteristics all emanate from (0, 0). Thus, the example wave is a centered, backward- 
facing, simple rarefaction wave. The   T;    characteristics span the wave, and fail to be 

straight lines. However, they may be calculated to within 0(Aa7)   as explained in Section 6. 
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g 0.005 

xft 

Figure 9 
We re-emphasize that it is not necessary to calculate the trajectories of the   T 

characteristics in order to establish function  / , or its material equivalent, the temperature 

mapping   T . 

There are three solid lines illustrated in Figure 9 which are characteristics of type 

T^   in the domain of the example wave. Each of these characteristics is marked with five 

points from domain @ of the wave. The points associated with the solid circles in Figure 9 

are designated with   {»•}i=1,34« > and the points associated with the squares are designated 

with   {pi}i=i^34J5 , ■ • ■ , etc., where the index increases with increasing x and t. When the 
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shock fronts is approached in domain 0, the   T7   and   Tn   characteristics become 

coincident in the limit. The solid line marked with the inverted triangles represents that limit. 
Now the range of /   on &, for the example wave, is the single curve, R , in the 

(p, U) plane - illustrated in Figure 10. Considering the developments of Section 5, it is 

clear that / has no inverse. All of the points on a given characteristic map to a single point 

on the curve. For example, all five domain points indicated by solid circles in Figure 9 map 

to the point associated with the single solid circle, designated as   n , on the curve in Figure 

10. The lead characteristic coincides with the ordinate passing through (0, 0), and is not 
marked in Figure 9. However, the range point to which it maps is illustrated as the hollow 
circle labelled 0 in Figure 10. 
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Figure 10 
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We observe that escape velocity,   UL , discussed on page 42, is proportional to   Ua 

at plane 0-0, given by Equation (91). The relationship may be written as: 

UL - BfoB) 
Y-1J 

■U (117) 

In Figure 10, the inverted triangle denotes the limit of characteristics. One can deduce from 

its position that in our example wave,   13L = 7303.4726 fi/sec   while 13^ = 1217.33 fi/s&c 

The stated magnitudes of these velocities are in precisely the ratio given by Equation (117) 

when   Y   f°r standard air is incorporated. 

It is clear that the limit velocity at plane 0-0 is substantially less that escape velocity 

for &. The equation for limit velocity at plane 0-0 in terms of both B^an)   and   13a is 

given as follows: 

U   = 
10      \ 

'Y-I 

kY
+lJ • w ■ ^ 

'Y+T u (118) 

Incorporating   y   for standard air, we find that   J7   = 2981.84 fi/sec   in our example wave. 

One can see that   UL   is larger than   U     by a factor of 2.4495 - the effect being due to the 

flow work done to form the shock at & at the time of initiation of the expansion wave. 
Noting that / symbolizes the subject wave function, we have shown that under the 

hypotheses laid down in Section 3, the representation of the mapping: 

given from characteristic theory is exact. We have also shown that on each   T_ 

characteristic, f \ Tn = T \ Tn . This means that if one were to select a point in @), such 

as,   {/>•}•=1 from Figure 9, the unique pair,  (T , U) , which corresponds to it may be 
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calculated precisely and directly. Since the   Tn   characteristics are straight and centered at 

(0, 0), there exists a constant,   A , such that   0 <. A < B/off)   , and such that the 

following equation pair holds in 2): 

- = -C + U = A 
t 

Y-l 
•C + U = B£on) 

(H9.i) 

(119.Ü) 

Now   Bio..) is constant throughout @, and determinate from the given stagnation tem- 

perature at plane 0-0, using Equation (93) from Section 6. For the selection of a point in @, 

x 
such as   {/>.}.=1 , it is clear that   A is determined by   - for that point. Hence   C   and 

U   are each uniquely determined by the following equation pair: 

C-(B^-A){^ 
U = 5/°//) + —7'A   '   "W in       y-l    J { Y+lJ 

(120.i) 

(120.Ü) 

The stagnation temperature,   T  , is immediately determinate by means of Equation (99) 

from Section 6, as a result. 

Under the mapping,   T , there is a unique pair,  (T , U) , corresponding to each 

choice of (x, t) in S>. Hence   T   is a function of x and t, and our wave may be represented 

in this fashion. Note that in view of the material equivalence,  f \ Tn = T \ Tn , and the 
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condition that   J = 0 , every point on the   Tn characteristic passing through a given point 

in S> maps to the same value of   T  . If our choice of (x, t) had been point   {p,}/=1   in 

Figure 9, for instance, then the points,   tPI}I--1,34e > represented by the solid squares, as 

well as any of the other points on the   Tn characteristic passing through   {/>,-}M , would 

map to the same value,   T = 2820 JR . 

The wave function solving our example problem is represented as  T (x, t) in Figure 

11, seen on the following page. Each contour label is the distance, x, in feet, from the plane 
of choked flow, i.e., plane 0-0. Again, we note that this representation is exact. Hence, 

Figure 11 is the representation of the function   T (t) at each of the indicated distances 

from plane 0-0. Stagnation temperature, T  , depending upon   {p.}._,,,,,   in Figure 9, is 

the set of points represented by the solid squares in Figure 11, which are sequenced from left 

to right with increasing index i. The common value,   T = 2820 R , which applies at each of 

the points,    lP,}I=U34s » aPPears on each of the five contours to which each of these points 

corresponds. 

Referring to Equation (119.i), one can see that constant A is the propagation velocity 

of a particular point in the range of the wave carrying a particular value of stagnation 

temperature   T  . In our example case, we directly calculate that   A = 5476.8592 fi/scc for 

the   Tff characteristic marked by points   {/,,}I=1,34s   in Figure 9. Employing Equations 

(120.i) and (120.Ü), and noting that   ß/o^) = 7303.4726 fi/sec , we find that 

C = 304.43557 ^/sec   and   U = 5781.29468 fi/sec . Turning to Equation (99), we 

calculate that   T = 2820.684 R , which is sufficiently close to the previously determined 
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value of   2820°R . This calculation of course, can be performed at any point in @. 

5000 i- 
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l*JiJ i = 1,2, 3,4, 5 

Shock Front 

0.01 

Figure 11 

It is clear that each value of   T   in the range of our wave has a different velocity of 

propagation; the range of velocities being 0 <, A < Bt{an) . The value of   T  at the critical 

flow point, i.e., plane 0-0, is given by Equation (101.i). At this location,   7 = r „  . 

However, the value of   T    at the rear face of the shock is   6"^   in standard air 
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according to Equation (lOl.ii). Here, we write:   T = T* . The extreme temperatures in the 

range of our wave, as well as that given for our example point   p , along with their 

velocities of propagation are given in the following table: 

Shock 

Point p 

Critical Point 

4440 °R 

2820 °R 

740 °R 

Velocity of Propagation 

7303.47260 ft/sec 

5476.8592 ft/sec 

0.0 ft/sec 

It is at once apparent that the critical point in the range of the wave, represented by the last 
line of the table, has no propagation velocity at all. It does not advance into the infinite main. 
It is on the lead characteristic of the wave, and is permanently located at plane 0-0 from 
initial time forward. 

One can see by examination of Figure 11 that the shape of   T (t) is different for 

each of the five linear distances from plane 0-0 indicated by the contour labels. This is the 
result of each part of the wave having a different propagation velocity. The distribution of 

T (t) , at each distance, is an artifact of the initial flow work done to create the shock 

which proceeds into the vacuum of the main. The vertical lines mark the time of appearance 
of the shock, following initiation of the wave at time zero, at each of the five indicated 
distances from plane 0-0. 

Let us turn, now, to the static pressure function,   p(x,t) ■  At each distance x 

from plane 0-0,    p = 0 at initial time, and asymptotically approaches a limit given by the 

following formula: 

Pcr=Po' 
(   2  ) 

• 
M cr 

2 

Y-1 

Y 

Y-1 

=    Pn 1(Y+1J 

_Y_ 

Y-1 

(121) 

where   U^   and   Uw are precisely given by Equations (91) and (118), respectively. This 
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limit exists due to   U     being the lower limit of velocity for domain @. For our example 

case, we calculate   pcr = 34.3381 psia   from Equation (121). 

Figure 12 shows   p (t) at each of the same five distances from plane 0-0 given by 

the contour labels in Figure 11. Those distances are represented by the contour labels in 
Figure 12, just as they were in Figure 11. The indicated points on these contours are the 
images of the similarly marked points on characteristics shown in Figure 9; as was the case 

for the   T   points in the range of   T(t)   shown in Figure 11. The grad symbol was made 

hollow in this plot so that the image points,  {^1,^3 4>5 , could be represented despite the 

image positions being so compacted due to the relatively gradual rate of rise of static 
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Figure 12 
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pressure. The static pressure limit, i.e., critical static pressure is denoted by   <E>  . 

On the interval over which the analysis was performed, Figure 12 clearly shows the 

asymptotic behavior of  p (t) at one foot distance from plane 0-0; although, even at the one- 

foot distance, it has only achieved 91.7% of its limit value after 10 milliseconds. 
The variation in velocity of propagation throughout & has considerable effect on the 

form of  p(t) as distance from plane 0-0 increases. The form of  p(t) at 25 feet from 

plane 0-0 is dissimilar to its form at 1 foot distance - its approach to the limit being much 
more gradual at 25 feet, as can be seen from the lower right-hand contour in Figure 12. 

Figure 13 represents   T (x, t)   as   T (x) at various times after initiation of the 

wave at plane 0-0. In this figure, the contour labels represent the time in seconds after the 
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initiation of the expansion wave, while the contours, themselves, represent the distribution of 
stagnation temperature. In this figure, the vertical lines give the shock position at each of the 
times indicated by the contour labels. The solid squares indicate the stagnation temperature 
immediately behind the shock at each of these times. 

The stagnation temperature immediately behind the shock retains the identical value of 
4440° R at each of the shock positions shown in Figure 13. However, it is clear that the 
stagnation temperature decreases at each location after the passage of the shock, eventually 
approaching the lower limit of 740° R marked by the dotted line. At each distance, x, and at 
this limit, the flow velocity is precisely critical. 

Finally, the stagnation temperature in the critical flow existing at plane 0-0 is the 
result of the work of expansion to accelerate the fluid from its quiescent condition in the 
reservoir to its state at plane 0-0. This acceleration is accomplished by an isentropic 
expansion wave which propagates into the subsonic flow in the reservoir, in the opposite 
direction from the rarefaction wave in the main. The result is that the stagnation temperature 
and pressure at plane 0-0 are each always less than the stagnation temperature and pressure in 
the reservoir. For our reservoir, which extends from the origin to  - °°   on the x-axis, and is 
infinite in extent in every direction perpendicular to the x-axis, and in which the flow is one- 
dimensional, this expansion wave is confined to plane 0-0 and, in this limiting case, becomes 
a stationary, isentropic expansion shockl. One can deduce that the Second Law of 
Thermodynamics is not contradicted in this instance2. 

The stagnation pressure and temperature at plane 0-0 are maintained, respectively, at 

P = 65.0 psia and T = 740.0°/? after initial time in our example problem. Under this 

condition, the corresponding static pressure and static temperature at plane 0-0 are each 
p = 34.338 psia and T = 616.667°/? . The expansion wave, which must be present at 

plane 0-0, requires that the stagnation pressure and temperature in the reservoir remain at 

p     = 82.419 psia   and   T    = 791.940°/? , respectively, for   t * 0 , in order to rRO RO 

maintain the specified values of  p   and   T   at plane 0-0. 

8. CONCLUSIONS 

A one-dimensional analysis of the flow resulting from the expansion of a calorically 
perfect gas from an infinite reservoir into a void main implies that the rarefaction wave 
associated with this expansion is preceded by a shock propagating into the vacuum of the 
main at a rate given by Equation (117) on page 55. The argument leading to this conclusion 
is found in Section 5 on pages 40-42. This argument also implies that the velocity of 
propagation of the shock is the least upper bound of the velocity of propagation of a 
disturbance in the domain of the rarefaction wave. If the specific heat ratio for standard air is 
applied, then the propagation velocity of the shock is six times the critical velocity 
corresponding to the thermodynamic state at plane 0-0, seen in Figure 1, Section 3. 
1 The development of this model is given in the Appendix. 
2 See the development of Equations (Al), (A2), and (A3) in 

the Appendix, as a limiting case. 62 



Concomitantly, the stagnation temperature immediately following the shock is given by 
Equation (lOl.ii). The argument leading to this equation is given in Section 6, pages 42-46. If 
the specific heat ratio for standard air is applied, the stagnation temperature following the 
shock is found to be six times the stagnation temperature at plane 0-0, as well. 

The roles of the First and Second Laws of Thermodynamics in the development of the 
transient flow characterized by this wave are developed in Section 3, and lead to Equation 
(95) on page 44; and to Equations (99) and (100) on page 45 in Section 6. These equations, 
in turn, lead to the conclusion that the local stagnation temperature in the domain of the 
rarefaction wave is strictly dependent upon local sound speed; and increases as sound speed 
decreases, reaching its limit at the back face of the shock. This limit temperature does not 
change over time, and appears immediately following the shock at each downstream location 
in the main. 

Apparently, the heat of compression, i.e., the flow work done to form the shock when 
the flow is initiated at plane 0-0, produces the thermal spike which one calculates from the 
application of characteristic theory to the flow interior to the rarefaction wave. Since the flow 
is inviscid in the analysis presented in this report, the thermodynamic process is reversible 
everywhere in the interior of the wave; hence, the calculated spike is not the result of 
frictional heating in the established flow. Even though the one dimensional and inviscid 
hypotheses represent substantial simplification of the actual physical flow found in the 
transient blow-down facility, they embody sufficient physics to imply that the thermal spike 
observed there is an artifact of the flow work done to establish the shock. 

The one-dimensional hypothesis implies that the flow in the reservoir must be 
quiescent, i.e. in a state of rest, and therefore steady, even at the initiation of the rarefaction 
wave. This, in fact, is not true, even in an infinite reservoir. The flow in the neighborhood of 
the inlet to the main must have some radial component, and must be established by an 
expansion wave which proceeds into the reservoir, however diffuse that wave must be. This 
means that the stagnation temperature at plane 0-0, where the flow is critical, is actually less 
than the stagnation temperature in the quiescent state in the reservoir. 

By insisting that the flow be one-dimensional in the infinite reservoir, one must admit 
the existence of an isentropic expansion shock at plane 0-0. It is shown in the appendix that 
the isentropic shock does not contradict the Second Law of Thermodynamics under the 
hypotheses of this problem; rather, it exists as the limiting case of the expansion wave which 
proceeds into the reservoir. Hence, the representation of the physics of the development of the 
backward-facing expansion wave is not fundamentally altered by the one-dimensional 
hypothesis. The application of characteristic theory to the two-dimensional equations of 
motion would allow one to characterize the expansion wave which proceeds into the reservoir, 
and therefore estimate its true effect. 
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APPENDIX 

Consider again the adiabatic, infinite reservoir and void main of Figure 1. The 
reservoir has infinite extent in 
the horizontal direction to the 
left of plane 0-0, and in any 
radial direction relative to its 
axis. Let us extend a 
cylindrical control volume, Sß, 
of the same diameter as the 
main from plane 0-0 to any 
distance, L, to the left of 
plane 0-0. We suppose that 
the right face of Sß is 
coincident with plane 0-0, 
and that Sß is coaxial with the 
main. Let the following 

notation apply: o-o rep- 

resents the surface of Sß 
coinciding with plane 0-0, 

a     represents the 

remainder of the surface of Sß 

when   o 

Infinite Reservoir 
Quiescent State 

Plane of Choked Flow 
Shock 
Front 

Vacuum 

Gas Expansion From Infinite Reservoir Into 
Vacuous Main 

r or ine surrace or & 
is excluded, and   O   represents the entire surface of Sß. Let   L     represent the 

length of Sß as L is extended to -~. Note that L     does not represent a finite number, nor an 

attainable length. Finally, let subscript RO apply to the thermodynamic state in the infinite 
reservoir, and let subscript 1 apply to the thermodynamic state at plane 0-0. 

Now, the thermodynamic state is fixed in time throughout Sß, and accumulated mass of 

gas is infinite when L=L_a. Subsequently, if the flow is one-dimensional, the following 

conservation relations hold for the half-open time interval   0 < t < °° '■ 

Momentum 

ff[V(pV-n) + p-n]da 
R0 Pi   + P U' M    c 

■a      =0 
0-0 

(Al) 
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Mass Flow 

jjpV-ndo = ffo+pV-fido+   +   9UCT'OQ o = 0 (A?) 

i = ^ - {*<0 = 0 A p(o+) - pÄ} /or   P^'Vo > ° 

Entropy 

fjfipVynda =sRo-ffo+PV-ndo+   +   ^P^/Vo = °    (A3) 

Equations (A2) and (A3) imply that when L=L_ , the steady effluxes of mass and 

entropy from Sß are balanced by the integrals of vanishingly small fluxes of these quantities 
over surface  ö    of Sß. The entrained mass and entropy in Sß are each infinite, and remain 

steady over the specified time interval. The momentum entrained in Sß is zero over the 
specified time interval in this case. Equation (A3) shows that the flow entering the head of 

the rarefaction wave at plane 0-0 is carrying entropy   s „.for o <, t < °°  ; and hence that 

s = s    throughout domains Sß and @, and their intersection, which is plane 0-0. 
R0 

Let us apply the First Law of Thermodynamics to the expansion from the infinite 

reservoir into the main. Recall that h defines total, or stagnation enthalpy. The flow is 

quiescent in the reservoir, and time-steady at plane 0-0 for   0 <, t < °°   • Now the total 

enthalpy efflux through the surface, o, of Sß, written as:   ff (pV-n)-hda , is the sum of two 

components; these components being expressed as Equations (A4.i) and (A4.ii): 

ff (pV-nyhda = ff (pV-nyeda + ff (pV-ny(pv)da 
JJa* JJa+ JJo+ (A4.1) 

//   (pV-Wdo = P^'VVo + Pi^iYVo (A4-ü) 
0 

0-0 
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Suppose that   L   approaches   L     . The infinite reservoir is in a quiescent state, so: 

dEKO 

dt 
2 

\lr^'h ~ !L(pm'eda' "."-v«- ° (A5) 

I = I  - too ) = 0 A p(a ) - p    A e(o ) = e\for oeV  o     > 0 
1    v    +' rv    +' r RO + R0\ rl   1    cr     0-0 

Consider a point p in Sß. In view of the quiescent state of the reservoir: 

De 
p e 2=* —ip) = 0 (A6) 

It follows that when   L=L     , we should write: 
—OO        7 

ffjpV-nyedo =   - P^W, (AT) 

It is apparent that when  L=L _ , the efflux of total energy at plane 0-0 no longer materially 

changes the total energy of the gas contained in the reservoir. Additionally, Equation (A2) 
implies: 

ff   pV-nda   =   -p U -o  A (A8) 

Consequently, Equations (A4.i) an (A4.ii) may be written in the following form: 

ff (pV-nyhda = - p U   e -o      + ff (pV-n)-lp  -v \da JJa+
Ky      ' V\   cr   \     o-o      JJa+^      J\yRo  ROj (A9#i) 

//    ipV^-hdo = P^VVo + P^TYYVo (A9.Ü) 
c 

0-0 

Equations (A9.i) and (A9.ii) imply that when L=L __ , the integral of the stagnation enthalpy 

over the surface of Sß becomes: 

// (pV-n)-hdo = pUjp^-p^-vJo^ < 0 (A10) 
a x ' 
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The right-hand side of Inequality (A 10) is clearly recognizable as the flow work rate which 
must be supplied by the reservoir to accelerate the flow from its quiescent state interior to the 
reservoir to its critical state at plane 0-0. This term must invariably be strictly less than zero. 
Evidently, the First Law Thermodynamics does not require the total enthalpy efflux from 3 to 
vanish in case the reservoir is infinite in extent, even when the flow at plane 0-0 is fixed in 
time. 

It is clear that a jump discontinuity in the total enthalpy at plane 0-0 is permitted, 
since the infinite reservoir maintains an inert state of total energy in spite of the facts that it 
is adiabatic, the flow conditions are time-steady, there is no influx of total energy into the 
reservoir; but there is an efflux of total energy at plane 0-0. An expression admitting a jump 
of finite magnitude is given by Inequality (A 10). However, the magnitude of the jump is not 
determined by this inequality. Rather, given that the thermodynamic process is reversible, it is 
determined by the entropy conservation relation of Equation(A3). One can see that the 
infinite, one-dimensional reservoir permits an isentropic expansion shock at plane 0-0 which 
satisfies both the First and Second Laws of Thermodynamics. 

Next, we consider the isentropic process at plane 0-0. Let the following definitions 
hold: 

R0 
(All) 

r = 

P    = 
R0 (A12) 

In view of the application of the Perfect Equation of State, we may write: 

Pi 
Pi RT 

(A13) 

Hence, Equation (Al) implies that: 

R0 

1        TT2 

yl        RT       cr 
1 

= 0 (A14) 

and we may write: 

T2 

r = 1 + 
U 

cr 

~RT 
(A15) 
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Continuing, let us compare   ß     with the critical temperature ratio at plane 0-0.  it is 

apparent that the isentropic condition on domains 9? and @, as well as their intersection, 

implies that one may define a function ß(z)   such that: 

ß(z) = (z) 

Y-l 

y (A16) 

where   z   is an arbitrary pressure ratio which is infinitely differentiable. Now, by Taylor's 

Theorem, there must be a real number   ( between 1 and r such that the following relation 
must hold: 

IE . P(1) ♦ !Vi, * ^W * ^-Cr-1)3 
T 1» 2' 3' 

l 

(A17) 

When Equation (A15) is introduced, Equation (A17) becomes: 

R0 
1 + 

(Y-l)     Ucr 
1!      yRTt 

(Y-l) 
2! 

IT 

yRT 

(Y-1)-(Y+1). (1) 
2y+l 

Y    . 

f         2   \ u 
cr 

3! L cj yRT 
1 < C < r (A18) 

For critical flow at plane 0-0, it must be that: 

,2 U 

yRT 
= 1 (A19) 

In this case, Equation (A 18) reduces to: 

1
_M = (Y+l)    +    (Y-1HY+1) 

2y+l 

1< C < (Y+l) (A20) 
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Equation (A20) shows that ratio of reservoir temperature to the temperature at plane 0-0 
differs from critical temperature ratio only by the remainder of the Taylor's Expansion after 
the first three terms. Re-introducing the notation of Equation (A12), we may write an 
inequality which expresses the difference between the reservoir temperature ratio and critical 
temperature ratio at plane 0-0. This inequality is: 

(A21) 
2y+l 

(Y-IHY+D. f    1   } Y      <{ß     " (Y+Dl ^  (Y-D-(Y+1) 
6 Y+l * 2                    6 

Clearly,   T    is steady for   0 < t < °° , and   (   is a unique number. It follows from 

Equation (A20) that   ß^ is fixed for   0 <, t < °°   as well. 

Note that if   T    symbolizes the stagnation temperature at plane 0-0, and 

T   symbolizes the static temperature there, when the flow velocity is critical, then: 

Z° = 111 (A22) 
T 2 

l 

Equation (A22) is the aforementioned critical temperature ratio. Obviously,   T    is fixed, and 

T    > T   for   0 <> t < oo . If the working fluid is standard air, then the critical 
R0 0 

temperature ratio at plane 0-0 may be calculated as: 

T 
_? = 111 = 1.200 (A23) 
T 2 

However, Inequality (A21) implies that: 

0.01486 < iß    - I—^ 1 < 0.16000 (A24) 

Clearly, the difference is always greater than zero. 
The values of reservoir stagnation pressure and temperature which must be maintained 

upstream of the expansion shock in order to sustain critical flow at plane 0-0 can be directly 
calculated from the conditions imposed by Equations (Al), (A2), and (A3). They are given by 
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Equations (A25) and (A26): 

P     ~ P ' 
W 

1+- 
cr 

RT = /Y(Y+i) 
(A25) 

I 2^ 

T    = T- 
RO 1 

U 
1+- 

/?r 

Y-l 

= r-(Y+i) 
Y 

(A26) 

71 


